skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yeager, Steve"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. The ocean mixed layer is the interface between the ocean interior and the atmosphere or sea ice and plays a key role in climate variability. It isthus critical that numerical models used in climate studies are capable of a good representation of the mixed layer, especially its depth. Here weevaluate the mixed-layer depth (MLD) in six pairs of non-eddying (1∘ grid spacing) and eddy-rich (up to 1/16∘) models from theOcean Model Intercomparison Project (OMIP), forced by a common atmospheric state. For model evaluation, we use an updated MLD dataset computed fromobservations using the OMIP protocol (a constant density threshold). In winter, low-resolution models exhibit large biases in the deep-waterformation regions. These biases are reduced in eddy-rich models but not uniformly across models and regions. The improvement is most noticeable inthe mode-water formation regions of the Northern Hemisphere. Results in the Southern Ocean are more contrasted, with biases of either sign remainingat high resolution. In eddy-rich models, mesoscale eddies control the spatial variability in MLD in winter. Contrary to a hypothesis that thedeepening of the mixed layer in anticyclones would make the MLD larger globally, eddy-rich models tend to have a shallower mixed layer at mostlatitudes than coarser models do. In addition, our study highlights the sensitivity of the MLD computation to the choice of a reference level andthe spatio-temporal sampling, which motivates new recommendations for MLD computation in future model intercomparison projects. 
    more » « less
  2. While it has generally been understood that the production of Labrador Sea Water (LSW) impacts the Atlantic meridional overturning circulation (MOC), this relationship has not been explored extensively or validated against observations. To explore this relationship, a suite of global ocean–sea ice models forced by the same interannually varying atmospheric dataset, varying in resolution from non-eddy-permitting to eddy-permitting (1°–1/4°), is analyzed to investigate the local and downstream relationships between LSW formation and the MOC on interannual to decadal time scales. While all models display a strong relationship between changes in the LSW volume and the MOC in the Labrador Sea, this relationship degrades considerably downstream of the Labrador Sea. In particular, there is no consistent pattern among the models in the North Atlantic subtropical basin over interannual to decadal time scales. Furthermore, the strong response of the MOC in the Labrador Sea to LSW volume changes in that basin may be biased by the overproduction of LSW in many models compared to observations. This analysis shows that changes in LSW volume in the Labrador Sea cannot be clearly and consistently linked to a coherent MOC response across latitudes over interannual to decadal time scales in ocean hindcast simulations of the last half century. Similarly, no coherent relationships are identified between the MOC and the Labrador Sea mixed layer depth or the density of newly formed LSW across latitudes or across models over interannual to decadal time scales. 
    more » « less